Name:	Klasse:	Datum:
-------	---------	--------

ELEKTRONIKER/IN FACHRICHTUNG ENERGIE- UND GEBÄUDETECHNIK

LÖSUNG

LF 6 --- Anlagen und Geräte analysieren und prüfen

Messung des Isolationswiderstandes

Funktion der Isolierung:

Ohne Werkstoffe mit isolierender Wirkung wäre weder die Erzeugung noch die Fortleitung elektrischer Energie möglich. Eine einwandfreie oder zumindest ausreichend widerstandsfähige Isolierung bietet eine Voraussetzung für

- den Schutz gegen elektrischen Schlag
- den Schutz gegen elektrisch gezündete Brände
- eine ordnungsgemäße und zuverlässige Funktion der elektrischen Anlage und der Betriebsmittel.

Warum muss der Isolationswiderstand gemessen werden?

Die heute verwendeten Isolierstoffe sind so gut, dass schlechte Isolationswerte nur noch an Stellen zu erwarten sind, an denen die Isolation beschädigt wurde. Die meisten Fehler treten daher an durch Schrauben oder Nägeln beschädigten Leitungen, Schalterdosen und an durch Feuchte oder Hitze zerstörten Isolierstoffen auf. Da nicht ausgeschlossen werden kann, dass bei der Errichtung einer elektrischen Anlage mechanische Zerstörungen der Isolierung passieren, muss der Isolationswiderstand vom Errichter gemessen werden.

Die Messung des Isolationswiderstandes ist bei der Erstprüfung die zweite durchzuführende Messung (nach der Messung der Niederohmigkeit des Schutzleiters).

Wie wird der Isolationswiderstand gemessen?

Die Messung des Isolationswiderstandes erfolgt im spannunsgfreien Zustand der Anlage mit einer Messgleichspannung. Mit einer Wechselspannungsmessung würde sich nicht der ohmsche Widerstand von Isolierungen ermitteln lassen, da kapazitive Widerstände zwischen den Leitern bzw. zwischen Leiter und Erde den Wert verfälschen würden. Die Höhe der Messgleichspannung richtet sich nach der Bemessungsspannung des Stromkreises (siehe Rückseite). In jedem Fall aber ist die Messspannung oberhalb der höchstzulässigen Berührungsspannung. Aus diesem Grund muss während der Messung gewährleistet werden, dass die Anlage vor direktem Berühren geschützt ist, z.B. durch das Abdecken der Schalter, Steckdosen etc.

In der Norm DIN VDE 0100-600 steht der folgende Satz:

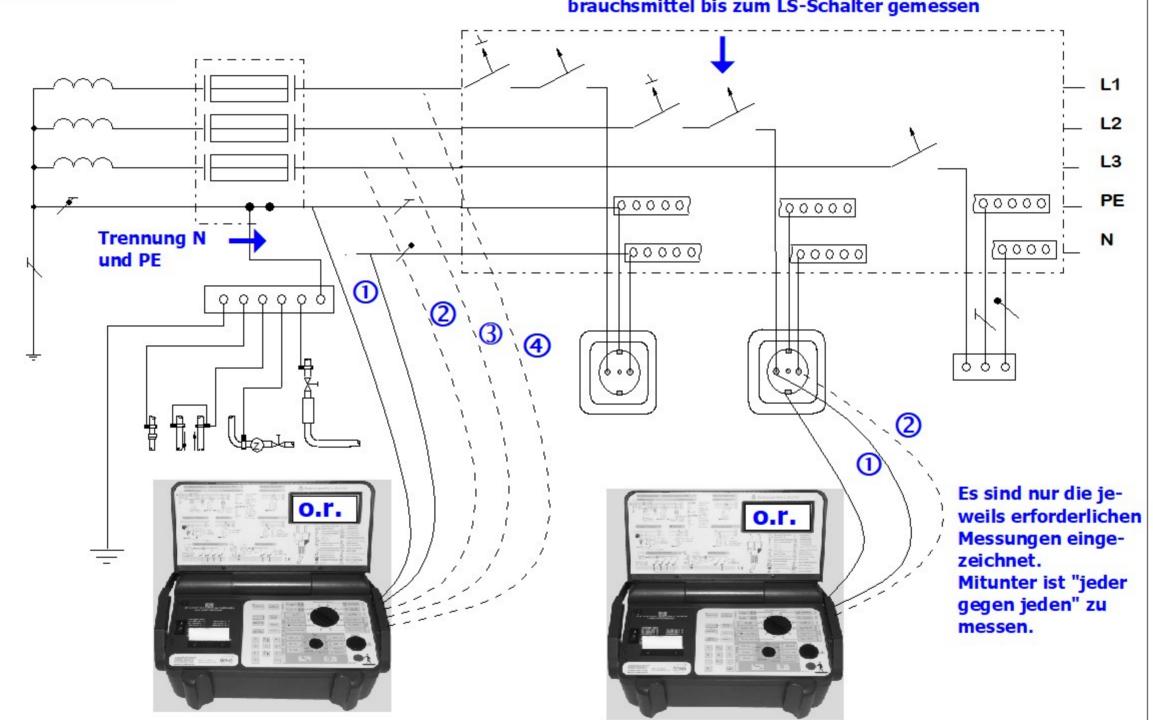
Der Isolationswiderstand muss zwischen den aktiven Leitern und dem mit der Erde verbundenen Schutzleiter gemessen werden.

Die Mindestforderung der Norm besagt am Beispiel einer Schutzkontakt-Steckdose, dass der Isolationswiderstand zwischen L und PE und N und PE gemessen werden muss. Selbstverständlich ist auch der Widerstand zwischen dem Außen- und Neutralleiter wichtig und kann über die Forderung der Norm hinaus gemessen werden, sofern keine Betriebsmittel durch die hohe Messspannung gefährdet werden. Besteht aber diese Gefahr, müssen die gefährdeten Verbrauchsmittel (z.B. Glühlampen) entfernt werden oder es ist auf diese Messung (zwischen L und N) zu verzichten. In der Regel verzichtet man auf die Messung zwischen L und N, wenn elektronische Bauelemente im Stromkreis vorhanden sind (z.B. Multifunktionsrelais).

Welche Mindestwerte (Grenzwerte) schreibt die Norm für die Erstprüfung vor?

Nennspannung des Stromkreises	Messgleichspannung	Isolationswiderstand
Schutzkleinspannung (SELV) und Funktionskleinspannung mit sicherer Trennung (PELV)	250 V	≥ 0,50 M Ω
bis einschließlich 500 V (auch FELV), nicht aber SELV und PELV	500 V	≥ 1,0 M Ω
über 500 V	1000 V	≥ 1,0 M Ω

Die in der Tabelle angegebenen Grenzwerte stellen nur die Mindestwerte der Isolationswiderstände dar, d.h. bei einem Steckdosenstromkreis ist der Isolationswiderstand von 1,0 M gerade noch ungefährlich. Der von der kabel- und leitungsherstellenden Industrie garantierte Isolationswiderstand liegt dagegen im hohen Mega- bzw. Gigaohmbereich. Bei einer Erstprüfung soll nicht der gerade noch sichere Zustand überprüft werden, sondern eine rundum ordnungsgemäß installierte Anlage nachgewiesen werden. Aus diesem Grund sind elektrische Anlagen nicht dem Kunden zu übergeben, wenn der Grenzwert zwar überschritten, der erwartete Wert aber weit unterschritten ist. In diesem Fall wird ein Mangel angezeigt, dessen Ursache aufzuklären und ggfs. zu beheben ist.


Messvorbereitung:

Folgende vorbereitende Maßnahmen sind erforderlich:

- Spannungsfreiheit der Anlage feststellen
- Abdeckungen zum Schutz vor direktes Berühren montieren (Prüfspannung: 500V DC!)
- Trennung des N-Leiters vom PE (z.B. im TN-C-System)
- Überprüfung, ob elektronische Bauelemente zerstört werden können.

Messdurchführung:

bei geöffnetem LS-Schalter wird nur vom Verbrauchsmittel bis zum LS-Schalter gemessen

Eintragung ins Prüfprotokoll:

Zunächst muss sich der Prüfer der elektrischen Anlage darüber im Klaren sein, dass es keinen Isolationswiderstand mit dem Wert "unendlich" gibt. Wird beispielsweise vom Display des Messgerätes der Wert "200 M Ω " angezeigt, so wird diese Angabe in das Prüfprotokoll eingetragen. Steht in einer Displayanzeige "OL" oder "o.r." so wird in das Prüfprotokoll die Überschreitung des Messbereichsendwert, z.B. " >200 M Ω " eingetragen. Ist im Prüfprotokoll nur Platz für die Eintragung eines Isolationswiderstandes wird stets der schlechteste Wert eingetragen.

Arbeitsaufträge:

- 1. Geben Sie Besonderheiten und typische Prüfschritte an, die bei der Isolationswertmessung zu beachten sind.
 - Messung nach der Niederohmigkeitsmessung des Schutzleiters, Trennen vom Netz (Messung im spannungsfreien Zustand der Anlage), Trennung von PE und N, Messung zwischen aktiven Leitern und Schutzleiter erforderlich (wenn möglich: "jeder gegen jeden"), Vorsicht bei elektronischen Bauelementen, Schutz gegen direktes Berühren
- In einer elektrischen Anlage sei der vorgeschriebene Mindestisolationswiderstand 1,0 MΩ. Welchen Grenzwert muss das Messgerät (Messfehler 30%) mindestens anzeigen, damit die Norm eingehalten wird.
 - **1,30 M**Ω
- Bewerten Sie die Anlage, wenn solch ein Wert bei der Erstprüfung gemessen wird.
 In dieser Anlage ist höchstwahrscheinlich ein Fehler, da der erwartete Isolationswiderstand wesentlich höher als der Grenzwert ist. Die Anlage darf nicht übergeben werden.
- 4. Warum muss mit einer "hohen" Messgleichspannung gemessen werden?
 Mit einer hohen Spannung wird die Spannungsfestigkeit der Isolierstoffe festgestellt. Die Messspannung muss eine Gleichspannung sein, weil sonst Kapazitäten den Messwert verfälschen würden.
- Erläutern Sie, zwischen welchen Leitern in einem TN-C-System der Isolationswiderstand gemessen werden muss!
 Der PEN-Leiter ist kein aktiver Leiter. Deshalb sind alle drei Außenleiter gegen den PEN-Leiter zu messen.
- Erörtern Sie, warum die DIN-VDE-Norm keine Maximalforderungen stellt, sondern Mindestanforderungen.
 Die Vorschriften der Norm sagen aus, ab welchen bzw. bis zu welchem Widerstand die Anlage sicher ist.